Density of rational points on rational elliptic surfaces

Julie Desjardins

Max Planck Institute in Bonn, Germany

6 September 2017

Julie Desjardins (Max Planck Institute in Bor

Density on elliptic surfaces

An elliptic surface with base C (smooth algebraic curve), is

 $\star~\mathscr{E}$ a smooth projective surface,

An elliptic surface with base C (smooth algebraic curve), is

- $\star~\mathscr{E}$ a smooth projective surface,
- * $\pi : \mathscr{E} \to C$, such that $\forall t \in C$ the fiber $\mathscr{E}_t = \pi^{-1}(t)$ is a smooth genus 1 curve, except for finitely many t,

An elliptic surface with base C (smooth algebraic curve), is

- $\star~\mathscr{E}$ a smooth projective surface,
- * $\pi : \mathscr{E} \to C$, such that $\forall t \in C$ the fiber $\mathscr{E}_t = \pi^{-1}(t)$ is a smooth genus 1 curve, except for finitely many t,
- $\star \sigma$ a section for π .

An elliptic surface with base \mathbb{P}^1 , is

★ & a smooth projective surface,
★ π : & → P¹, such that ∀t ∈ P¹
the fiber & π⁻¹(t) is a
smooth genus 1 curve, except
for finitely many t,

 $\star \sigma$ a section for π .

 $\bullet \ \ensuremath{\mathscr{E}}$ admits a Weierstrass equation

$$y^2 = x^3 + A(T)x + B(T)$$
, where $A, B \in \mathbb{Z}[T]$.

• & admits a Weierstrass equation

$$y^2 = x^3 + A(T)x + B(T)$$
, where $A, B \in \mathbb{Z}[T]$.

• The function *j*-invariant $\mathbb{P}^1 \to \mathbb{P}^1$ is defined as

$$t \mapsto rac{1728 \left(4 A(t)
ight)^3}{16 \left(4 A(t)^3 + 27 B(t)^2
ight)}$$

• j(T) constant $\Leftrightarrow \mathscr{E}$ isotrivial

• & admits a Weierstrass equation

$$y^2 = x^3 + A(T)x + B(T)$$
, where $A, B \in \mathbb{Z}[T]$.

 \bullet The function $j\text{-invariant}\ \mathbb{P}^1\to\mathbb{P}^1$ is defined as

$$t\mapsto rac{1728\left(4A(t)
ight)^3}{16(4A(t)^3+27B(t)^2)}$$

• j(T) constant $\Leftrightarrow \mathscr{E}$ isotrivial

If deg A ≤ 4, deg B ≤ 6, and Δ(T) ∉ Q then ℰ is rational (birational to P²).

Theorem (Iskovskih '79)

Let $\mathscr{E} \to \mathbb{P}^1$ be a rational elliptic surface. Its minimal model X/\mathbb{Q} is:

• either a conic bundle of degree ≥ 1 ,

• or a del Pezzo surface.

Theorem (Iskovskih '79)

Let $\mathscr{E} \to \mathbb{P}^1$ be a rational elliptic surface. Its minimal model X/\mathbb{Q} is:

- either a conic bundle of degree ≥ 1 ,
- or a del Pezzo surface.

The density is shown if $X(\mathbb{Q})$ is non-empty and if X is

- \star a conic bundle of degree ≥ 1 (Kollár Mella)
- \star a DP of degree \geq 3 (Segre Manin)
- * a DP of degree 2 with a rational point outside of the exceptional curves and of a certain quartic (Salgado, Testa, Várilly-Alvarado).
- * For DP1, partial results (Ulas, Salgado van Luijk, Várilly-Alvarado).

< 回 > < 三 > < 三 >

Zariski-density and how to prove it

Known fact

Let K be a number field.

 $\#\{t \in \mathbb{P}^1 \mid \operatorname{rk}(\mathscr{E}_t) \neq 0\} = \infty \Leftrightarrow \mathscr{E}(K) \text{ is dense}$

3

12 N 4 12 N

< 47 ▶ <

Zariski-density and how to prove it

Known fact

Let K be a number field.

$$\#\{t\in \mathbb{P}^1\mid \mathrm{rk}(\mathscr{E}_t)
eq 0\}=\infty\Leftrightarrow \mathscr{E}(K)$$
 is dense

Two approaches:

- geometric (computation of the rank, section of infinite order)
- analytic (variation of the root number $W(\mathscr{E}_t)$ and parity conjecture $W(\mathscr{E}_t) = (-1)^{rk\mathscr{E}_t}$).

Zariski-density and how to prove it

Known fact

Let K be a number field.

$$\#\{t\in\mathbb{P}^1\mid \mathrm{rk}(\mathscr{E}_t)
eq 0\}=\infty\Leftrightarrow\mathscr{E}(K)$$
 is dense

Two approaches:

- geometric (computation of the rank, section of infinite order)
- analytic (variation of the *root number* $W(\mathscr{E}_t)$ and parity conjecture $W(\mathscr{E}_t) = (-1)^{rk\mathscr{E}_t}$).

Define two sets $W_{\pm}(\mathscr{E}) = \{t \in \mathbb{P}^1 \mid W(\mathscr{E}_t) = \pm 1\}.$

If the parity conjecture holds on the fibers of $\mathscr E,$ we have

$$\#W_{-}(\mathscr{E}) = \infty \Rightarrow \mathscr{E}(\mathbb{Q})$$
 is dense

- 3

Conjecture [D.]

Let $\mathscr{E} \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} . Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_0 such that $\mathscr{E} \simeq E_0 \times \mathbb{P}^1$.

Conjecture [D.]

Let $\mathscr{E} \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} . Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_0 such that $\mathscr{E} \simeq E_0 \times \mathbb{P}^1$.

• if $\exists E_0$ such that $E_0 \times \mathbb{P}^1$, but $\operatorname{rk}(E_0) = 0$ then $\mathscr{E}(\mathbb{Q})$ is not dense!

Conjecture [D.]

Let $\mathscr{E} \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} . Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_0 such that $\mathscr{E} \simeq E_0 \times \mathbb{P}^1$.

if ∃E₀ such that E₀ × P¹, but rk(E₀) = 0 then E(Q) is not dense!
isotrivial : ∃E₀ s.t. E ≃₀ E₀ × P¹.

Conjecture [D.]

Let $\mathscr{E} \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} . Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_0 such that $\mathscr{E} \simeq E_0 \times \mathbb{P}^1$.

- if $\exists E_0$ such that $E_0 \times \mathbb{P}^1$, but $\operatorname{rk}(E_0) = 0$ then $\mathscr{E}(\mathbb{Q})$ is not dense!
- isotrivial : $\exists E_0 \text{ s.t. } \mathscr{E} \simeq_{\bar{\mathbb{Q}}} E_0 \times \mathbb{P}^1$.
- For non-isotrivial elliptic surface: believed.
- Isotrivial elliptic surface: new!

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_v \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \to \mathbb{P}^1$ be a non-isotrivial elliptic surface over $\mathbb{Q}.$ Assume

- * Chowla's conjecture for $M_{\mathscr{E}} = \prod_{v \text{ mult}} P_v$ and
- **\star Squarefree conjecture** for all $P_{v'}$ of bad reduction.

Then

$$\#W_{\pm} = \{t \in \mathbb{P}^1_{\mathbb{Q}} \mid W(\mathscr{E}) = \pm 1\} = \infty.$$

Moreover, can avoid assuming squarefree conjecture if P_v of additive potentially good reduction satisfy a technical hypothesis.

・ 同 ト ・ ヨ ト ・ ヨ ト

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_v \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \to \mathbb{P}^1$ be a non-isotrivial elliptic surface over $\mathbb{Q}.$ Assume

- * Chowla's conjecture for $M_{\mathscr{E}} = \prod_{v \text{ mult}} P_v$ and
- **\star Squarefree conjecture** for all $P_{v'}$ of bad reduction.

Then

$$\#W_{\pm}=\{t\in \mathbb{P}^1_{\mathbb{Q}}\mid W(\mathscr{E})=\pm 1\}=\infty.$$

Moreover, can avoid assuming squarefree conjecture if P_v of additive potentially good reduction satisfy a technical hypothesis.

Completes and generalizes [*Helfgott*]: for non-isotrivial *E* such that M_E ≠ 1, the average root number is av_Q(W(*E*_t)) = 0.

イロト 不得下 イヨト イヨト

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_v \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \to \mathbb{P}^1$ be a non-isotrivial elliptic surface over $\mathbb{Q}.$ Assume

- * Chowla's conjecture for $M_{\mathscr{E}} = \prod_{v \text{ mult}} P_v$ and
- **\star Squarefree conjecture** for all $P_{v'}$ of bad reduction.

Then

$$\#W_{\pm}=\{t\in \mathbb{P}^1_{\mathbb{Q}}\mid W(\mathscr{E})=\pm 1\}=\infty.$$

Moreover, can avoid assuming squarefree conjecture if P_v of additive potentially good reduction satisfy a technical hypothesis.

- Completes and generalizes [*Helfgott*]: for non-isotrivial *&* such that M_& ≠ 1, the average root number is av_Q(W(*&*_t)) = 0.
- Uses a formula for the root number W(E_t) spliting into "contributions" of each P_v according to the type of reduction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_v \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \to \mathbb{P}^1$ be a non-isotrivial elliptic surface over $\mathbb{Q}.$ Assume

- * Chowla's conjecture for $M_{\mathscr{E}} = \prod_{v \text{ mult}} P_v$ and
- * Squarefree conjecture for all $P_{v'}$ of bad reduction.

Then

$$\#W_{\pm}=\{t\in \mathbb{P}^1_{\mathbb{Q}}\mid W(\mathscr{E})=\pm 1\}=\infty.$$

Moreover, can avoid assuming squarefree conjecture if P_v of additive potentially good reduction satisfy a technical hypothesis.

- Completes and generalizes [*Helfgott*]: for non-isotrivial *&* such that M_& ≠ 1, the average root number is av_Q(W(*&*t)) = 0.
- Uses a formula for the root number W(E_t) spliting into "contributions" of each P_v according to the type of reduction.
- Uses new sieve: combining Chowla's and squarefree conjectures

For isotrivial *E*, it happens that the root number t → W(*E*_t) is constant. [Cassels-Schinzel '82]: On

$$\mathscr{E}: y^2 = x^3 - 7^2(t^4 + 1)^2 x,$$

one has $W(\mathscr{E}_t) = -1$ for every $t \in \mathbb{Q}$.

Restriction on the degree of the coefficients: rational elliptic surfaces.

For isotrivial *E*, it happens that the root number t → W(*E*_t) is constant. [Cassels-Schinzel '82]: On

$$\mathscr{E}: y^2 = x^3 - 7^2(t^4 + 1)^2 x,$$

one has $W(\mathscr{E}_t) = -1$ for every $t \in \mathbb{Q}$.

• Restriction on the degree of the coefficients: rational elliptic surfaces.

Theorem (D.)

Let $\mathscr{E} \to \mathbb{P}^1$ be a rational elliptic surface. Then $\mathscr{E}(\mathbb{Q})$ is dense in the following cases.

- ★ *E* isotrivial and $j(T) \neq 0$
- ★ \mathscr{E} admits a place of type II^* , III^* , IV^* or I_m^* $(m \ge 1)$.

E 5 4 E 5

• • • • • • • •

Sketch of proof

If $j \neq 0, 1728$, then X the minimal model of \mathscr{E} is a conic bundle: [Kollar&Mella] $\implies \mathscr{E}(\mathbb{Q})$ dense if \exists type II*, III*, IV*, $I_m^* \ (m \ge 1)$, then X is a del Pezzo of degree ≥ 3 : [Manin&Segre] $\implies \mathscr{E}(\mathbb{Q})$ dense,

3

Sketch of proof

If $j \neq 0, 1728$, then X the minimal model of \mathscr{E} is a conic bundle: [Kollar&Mella] $\implies \mathscr{E}(\mathbb{Q})$ dense

- if \exists type *II**, *III**, *IV**, I_m^* ($m \ge 1$), then X is a del Pezzo of degree ≥ 3 : [Manin&Segre] $\implies \mathscr{E}(\mathbb{Q})$ dense,
- if j = 1728, find an "almost section" $Q \in \mathscr{E}_t(\mathbb{Q})$ (only for $t \in \mathbb{Q}$ satisfying a certain property) which is
 - non-torsion in certain case \implies $\mathscr{E}(\mathbb{Q})$ dense,
 - 2-torsion otherwise.

E SQA

Sketch of proof

If $j \neq 0, 1728$, then X the minimal model of \mathscr{E} is a conic bundle: [Kollar&Mella] $\implies \mathscr{E}(\mathbb{Q})$ dense

if \exists type *II**, *III**, *IV**, I_m^* ($m \ge 1$), then X is a del Pezzo of degree ≥ 3 : [Manin&Segre] $\implies \mathscr{E}(\mathbb{Q})$ dense,

if j = 1728, find an "almost section" $Q \in \mathscr{E}_t(\mathbb{Q})$ (only for $t \in \mathbb{Q}$ satisfying a certain property) which is

- non-torsion in certain case $\implies \mathscr{E}(\mathbb{Q})$ dense,
- 2-torsion otherwise.

In this case, it is still possible to prove the density using the minimal model:

- ► X is never a Del Pezzo of degree 1
- if X is a DP \geq 3 or a conic bundle $\implies \mathscr{E}(\mathbb{Q})$ dense,
- If X is a DP2, then using the "almost section" Q one can show that there exists a point outside of the exceptional curves and the quartic ⇒ E(Q) dense.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

j(T) = 0 Then $\mathscr{E}: y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$.

- 31

(日) (周) (三) (三)

$$j(T) = 0$$
 Then $\mathscr{E} : y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when deg $F \ge 5$ and F is not a square!

j(T) = 0 Then $\mathscr{E} : y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when deg $F \ge 5$ and F is not a square!

- Ulas: deg $F = 5 + \text{condition} \implies \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \implies$ $\# W_{\pm}(\mathscr{E}) = \infty.$ Most natural counter-example: $F(T) = 3AT^6 + B$,

where $A, B \in \mathbb{Z}$.

- 31

j(T) = 0 Then $\mathscr{E} : y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when deg $F \ge 5$ and F is not a square!

- Ulas: deg $F = 5 + \text{condition} \implies \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \implies$ $\#W_{\pm}(\mathscr{E}) = \infty.$

Most natural counter-example: $F(T) = 3AT^6 + B$, where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)

- 3

j(T) = 0 Then $\mathscr{E} : y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when deg $F \ge 5$ and F is not a square!

- Ulas: deg $F = 5 + \text{condition} \implies \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \implies$ $\#W_{\pm}(\mathscr{E}) = \infty.$

Most natural counter-example: $F(T) = 3AT^6 + B$, where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)

 $j(T) \notin \mathbb{Q}$ Prove density of rational points without using root number?

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

j(T) = 0 Then $\mathscr{E} : y^2 = x^3 + F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when deg $F \ge 5$ and F is not a square!

- Ulas: deg $F = 5 + \text{condition} \implies \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on F ⇒
 #W_±(𝔅) = ∞.
 Most natural counter-example: F(T) = 3AT⁶ + B,

where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)

 $j(T) \notin \mathbb{Q}$ Prove density of rational points without using root number?

- Salgado & Van Luijk: When the minimal model is a DP1 and there is a linear polynomial of type *l*₁ (among other results)
- Bettin, David & Delaunay: Restrict the degree of coefficients and study the generic rank with Nagao's formula. (⇒ project at ICTP!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Thank you for your attention!

イロト イ団ト イヨト イヨト

æ