Density of rational points on rational elliptic surfaces

Julie Desjardins
Max Planck Institute in Bonn, Germany

6 September 2017

(Rational) elliptic surfaces and where to find them:

An elliptic surface with base C (smooth algebraic curve), is
$\star \mathscr{E}$ a smooth projective surface,

(Rational) elliptic surfaces and where to find them:

An elliptic surface with base C (smooth algebraic curve), is
$\star \mathscr{E}$ a smooth projective surface,
$\star \pi: \mathscr{E} \rightarrow C$, such that $\forall t \in C$ the fiber $\mathscr{E}_{t}=\pi^{-1}(t)$ is a smooth genus 1 curve, except for finitely many t,

(Rational) elliptic surfaces and where to find them:

An elliptic surface with base C (smooth algebraic curve), is
$\star \mathscr{E}$ a smooth projective surface, $\star \pi: \mathscr{E} \rightarrow C$, such that $\forall t \in C$ the fiber $\mathscr{E}_{t}=\pi^{-1}(t)$ is a smooth genus 1 curve, except for finitely many t,
$\star \quad \sigma$ a section for π.

(Rational) elliptic surfaces and where to find them:

An elliptic surface with base \mathbb{P}^{1}, is
$\star \mathscr{E}$ a smooth projective surface, $\star \pi: \mathscr{E} \rightarrow \mathbb{P}^{1}$, such that $\forall t \in \mathbb{P}^{1}$ the fiber $\mathscr{E}_{t}=\pi^{-1}(t)$ is a smooth genus 1 curve, except for finitely many t,
$\star \quad \sigma$ a section for π.

(Rational) elliptic surfaces and where to find them:

- \mathscr{E} admits a Weierstrass equation

$$
y^{2}=x^{3}+A(T) x+B(T) \text {, where } A, B \in \mathbb{Z}[T] \text {. }
$$

(Rational) elliptic surfaces and where to find them:

- \mathscr{E} admits a Weierstrass equation

$$
y^{2}=x^{3}+A(T) x+B(T), \text { where } A, B \in \mathbb{Z}[T]
$$

- The function j-invariant $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is defined as

$$
t \mapsto \frac{1728(4 A(t))^{3}}{16\left(4 A(t)^{3}+27 B(t)^{2}\right)}
$$

- $j(T)$ constant $\Leftrightarrow \mathscr{E}$ isotrivial
(Rational) elliptic surfaces and where to find them:
- \mathscr{E} admits a Weierstrass equation

$$
y^{2}=x^{3}+A(T) x+B(T), \text { where } A, B \in \mathbb{Z}[T]
$$

- The function j-invariant $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is defined as

$$
t \mapsto \frac{1728(4 A(t))^{3}}{16\left(4 A(t)^{3}+27 B(t)^{2}\right)}
$$

- $j(T)$ constant $\Leftrightarrow \mathscr{E}$ isotrivial
- If $\operatorname{deg} A \leq 4, \operatorname{deg} B \leq 6$, and $\Delta(T) \notin \mathbb{Q}$ then \mathscr{E} is rational (birational to \mathbb{P}^{2}).

Rational elliptic surfaces and where to find them:

Theorem (Iskovskih '79)
Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a rational elliptic surface. Its minimal model X / \mathbb{Q} is:

- either a conic bundle of degree ≥ 1,
- or a del Pezzo surface.

Rational elliptic surfaces and where to find them:

Theorem (Iskovskih '79)

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a rational elliptic surface. Its minimal model X / \mathbb{Q} is:

- either a conic bundle of degree ≥ 1,
- or a del Pezzo surface.

The density is shown if $X(\mathbb{Q})$ is non-empty and if X is
\star a conic bundle of degree ≥ 1 (Kollár - Mella)

* a DP of degree ≥ 3 (Segre - Manin)
* a DP of degree 2 with a rational point outside of the exceptional curves and of a certain quartic (Salgado, Testa, Várilly-Alvarado).
* For DP1, partial results (Ulas, Salgado - van Luijk, Várilly-Alvarado).

Zariski-density and how to prove it

Known fact

Let K be a number field.

$$
\#\left\{t \in \mathbb{P}^{1} \mid \operatorname{rk}\left(\mathscr{E}_{t}\right) \neq 0\right\}=\infty \Leftrightarrow \mathscr{E}(K) \text { is dense }
$$

Zariski-density and how to prove it

Known fact

Let K be a number field.

$$
\#\left\{t \in \mathbb{P}^{1} \mid \operatorname{rk}\left(\mathscr{E}_{t}\right) \neq 0\right\}=\infty \Leftrightarrow \mathscr{E}(K) \text { is dense }
$$

Two approaches:

- geometric (computation of the rank, section of infinite order)
- analytic (variation of the root number $W\left(\mathscr{E}_{t}\right)$ and parity conjecture $\left.W\left(\mathscr{E}_{t}\right)=(-1)^{r k \mathscr{E}_{t}}\right)$.

Zariski-density and how to prove it

Known fact

Let K be a number field.

$$
\#\left\{t \in \mathbb{P}^{1} \mid \operatorname{rk}\left(\mathscr{E}_{t}\right) \neq 0\right\}=\infty \Leftrightarrow \mathscr{E}(K) \text { is dense }
$$

Two approaches:

- geometric (computation of the rank, section of infinite order)
- analytic (variation of the root number $W\left(\mathscr{E}_{t}\right)$ and parity conjecture $\left.W\left(\mathscr{E}_{t}\right)=(-1)^{r k \mathscr{E}_{t}}\right)$.
Define two sets $W_{ \pm}(\mathscr{E})=\left\{t \in \mathbb{P}^{1} \mid W\left(\mathscr{E}_{t}\right)= \pm 1\right\}$.
If the parity conjecture holds on the fibers of \mathscr{E}, we have

$$
\# W_{-}(\mathscr{E})=\infty \Rightarrow \mathscr{E}(\mathbb{Q}) \text { is dense }
$$

A conjecture and why to believe it

Conjecture [D.]

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be an elliptic surface over \mathbb{Q}. Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_{0} such that $\mathscr{E} \simeq E_{0} \times \mathbb{P}^{1}$.

A conjecture and why to believe it

Conjecture [D.]

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be an elliptic surface over \mathbb{Q}. Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_{0} such that $\mathscr{E} \simeq E_{0} \times \mathbb{P}^{1}$.

- if $\exists E_{0}$ such that $E_{0} \times \mathbb{P}^{1}$, but $\operatorname{rk}\left(E_{0}\right)=0$ then $\mathscr{E}(\mathbb{Q})$ is not dense!

A conjecture and why to believe it

Conjecture [D.]

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be an elliptic surface over \mathbb{Q}. Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_{0} such that $\mathscr{E} \simeq E_{0} \times \mathbb{P}^{1}$.

- if $\exists E_{0}$ such that $E_{0} \times \mathbb{P}^{1}$, but $\operatorname{rk}\left(E_{0}\right)=0$ then $\mathscr{E}(\mathbb{Q})$ is not dense!
- isotrivial : $\exists E_{0}$ s.t. $\mathscr{E} \simeq_{\overline{\mathbb{Q}}} E_{0} \times \mathbb{P}^{1}$.

A conjecture and why to believe it

Conjecture [D.]

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be an elliptic surface over \mathbb{Q}. Then $\mathscr{E}(\mathbb{Q})$ is Zariski-dense unless there is an elliptic curve E_{0} such that $\mathscr{E} \simeq E_{0} \times \mathbb{P}^{1}$.

- if $\exists E_{0}$ such that $E_{0} \times \mathbb{P}^{1}$, but $\operatorname{rk}\left(E_{0}\right)=0$ then $\mathscr{E}(\mathbb{Q})$ is not dense!
- isotrivial : $\exists E_{0}$ s.t. $\mathscr{E} \simeq_{\overline{\mathbb{Q}}} E_{0} \times \mathbb{P}^{1}$.
- For non-isotrivial elliptic surface: believed.
- Isotrivial elliptic surface: new!

A conjecture and why to believe it

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_{v} \in \mathbb{Z}[X]$.
Theorem (D.)
Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a non-isotrivial elliptic surface over \mathbb{Q}. Assume

* Chowla's conjecture for $M_{\mathscr{E}}=\prod_{v \text { mult }} P_{v}$ and
\star Squarefree conjecture for all $P_{v^{\prime}}$ of bad reduction.
Then

$$
\# W_{ \pm}=\left\{t \in \mathbb{P}_{\mathbb{Q}}^{1} \mid W(\mathscr{E})= \pm 1\right\}=\infty .
$$

Moreover, can avoid assuming squarefree conjecture if P_{v} of additive potentially good reduction satisfy a technical hypothesis.

A conjecture and why to believe it

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_{v} \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a non-isotrivial elliptic surface over \mathbb{Q}. Assume

* Chowla's conjecture for $M_{\mathscr{E}}=\prod_{v \text { mult }} P_{v}$ and
* Squarefree conjecture for all $P_{v^{\prime}}$ of bad reduction.

Then

$$
\# W_{ \pm}=\left\{t \in \mathbb{P}_{\mathbb{Q}}^{1} \mid W(\mathscr{E})= \pm 1\right\}=\infty .
$$

Moreover, can avoid assuming squarefree conjecture if P_{v} of additive potentially good reduction satisfy a technical hypothesis.

- Completes and generalizes [Helfgott]: for non-isotrivial \mathscr{E} such that $M_{\mathscr{E}} \neq 1$, the average root number is $\operatorname{av}_{\mathbb{Q}}\left(W\left(\mathscr{E}_{t}\right)\right)=0$.

A conjecture and why to believe it

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_{v} \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a non-isotrivial elliptic surface over \mathbb{Q}. Assume

* Chowla's conjecture for $M_{\mathscr{E}}=\prod_{v \text { mult }} P_{v}$ and
* Squarefree conjecture for all $P_{v^{\prime}}$ of bad reduction.

Then

$$
\# W_{ \pm}=\left\{t \in \mathbb{P}_{\mathbb{Q}}^{1} \mid W(\mathscr{E})= \pm 1\right\}=\infty .
$$

Moreover, can avoid assuming squarefree conjecture if P_{v} of additive potentially good reduction satisfy a technical hypothesis.

- Completes and generalizes [Helfgott]: for non-isotrivial \mathscr{E} such that $M_{\mathscr{E}} \neq 1$, the average root number is $\operatorname{av}_{\mathbb{Q}}\left(W\left(\mathscr{E}_{t}\right)\right)=0$.
- Uses a formula for the root number $W\left(\mathscr{E}_{t}\right)$ spliting into "contributions" of each P_{v} according to the type of reduction.

A conjecture and why to believe it

Identify finite places v of $\mathbb{Q}(T)$ with corresponding monic irreducible $P_{v} \in \mathbb{Z}[X]$.

Theorem (D.)

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a non-isotrivial elliptic surface over \mathbb{Q}. Assume

* Chowla's conjecture for $M_{\mathscr{E}}=\prod_{v \text { mult }} P_{v}$ and
* Squarefree conjecture for all $P_{v^{\prime}}$ of bad reduction.

Then

$$
\# W_{ \pm}=\left\{t \in \mathbb{P}_{\mathbb{Q}}^{1} \mid W(\mathscr{E})= \pm 1\right\}=\infty .
$$

Moreover, can avoid assuming squarefree conjecture if P_{v} of additive potentially good reduction satisfy a technical hypothesis.

- Completes and generalizes [Helfgott]: for non-isotrivial \mathscr{E} such that $M_{\mathscr{E}} \neq 1$, the average root number is $\operatorname{av}_{\mathbb{Q}}\left(W\left(\mathscr{E}_{t}\right)\right)=0$.
- Uses a formula for the root number $W\left(\mathscr{E}_{t}\right)$ spliting into "contributions" of each P_{v} according to the type of reduction.
- Uses new sieve: combining Chowla's and squarefree conjectures

A conjecture and why to believe it

- For isotrivial \mathscr{E}, it happens that the root number $t \mapsto W\left(\mathscr{E}_{t}\right)$ is constant. [Cassels-Schinzel '82]: On

$$
\mathscr{E}: y^{2}=x^{3}-7^{2}\left(t^{4}+1\right)^{2} x,
$$

one has $W\left(\mathscr{E}_{t}\right)=-1$ for every $t \in \mathbb{Q}$.

- Restriction on the degree of the coefficients: rational elliptic surfaces.

A conjecture and why to believe it

- For isotrivial \mathscr{E}, it happens that the root number $t \mapsto W\left(\mathscr{E}_{t}\right)$ is constant. [Cassels-Schinzel '82]: On

$$
\mathscr{E}: y^{2}=x^{3}-7^{2}\left(t^{4}+1\right)^{2} x
$$

one has $W\left(\mathscr{E}_{t}\right)=-1$ for every $t \in \mathbb{Q}$.

- Restriction on the degree of the coefficients: rational elliptic surfaces.

Theorem (D.)

Let $\mathscr{E} \rightarrow \mathbb{P}^{1}$ be a rational elliptic surface. Then $\mathscr{E}(\mathbb{Q})$ is dense in the following cases.
$\star \mathscr{E}$ isotrivial and $j(T) \neq 0$
$\star \mathscr{E}$ admits a place of type $I I^{*}, I I I^{*}, I V^{*}$ or $I_{m}^{*}(m \geq 1)$.

Sketch of proof

If $j \neq 0,1728$, then X the minimal model of \mathscr{E} is a conic bundle:
[Kollar\&Mella] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense
if \exists type $I I^{*}, I I I^{*}, I^{*}, I_{m}^{*}(m \geq 1)$, then X is a del Pezzo of degree ≥ 3 :
[Manin\&Segre] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,

Sketch of proof

If $j \neq 0,1728$, then X the minimal model of \mathscr{E} is a conic bundle:
[Kollar\&Mella] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense
if \exists type $I I^{*}, I I I^{*}, I V^{*}, I_{m}^{*}(m \geq 1)$, then X is a del Pezzo of degree ≥ 3 :
[Manin\&Segre] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,
if $j=1728$, find an "almost section" $Q \in \mathscr{E}_{t}(\mathbb{Q})$ (only for $t \in \mathbb{Q}$ satisfying a certain property) which is

- non-torsion in certain case $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,
- 2-torsion otherwise.

Sketch of proof

If $j \neq 0,1728$, then X the minimal model of \mathscr{E} is a conic bundle:
[Kollar\&Mella] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense
if \exists type $I I^{*}, I I I^{*}, I V^{*}, I_{m}^{*}(m \geq 1)$, then X is a del Pezzo of degree ≥ 3 :
[Manin\&Segre] $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,
if $j=1728$, find an "almost section" $Q \in \mathscr{E}_{t}(\mathbb{Q})$ (only for $t \in \mathbb{Q}$ satisfying a certain property) which is

- non-torsion in certain case $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,
- 2-torsion otherwise.

In this case, it is still possible to prove the density using the minimal model:

- X is never a Del Pezzo of degree 1
- if X is a $\mathrm{DP} \geq 3$ or a conic bundle $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense,
- if X is a DP2, then using the "almost section" Q one can show that there exists a point outside of the exceptional curves and the quartic $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense.

Missing cases and what is known about them

$$
j(T)=0 \text { Then } \mathscr{E}: y^{2}=x^{3}+F(T) \text {, where } F(T) \in \mathbb{Z}[T] .
$$

Missing cases and what is known about them

$$
\begin{gathered}
j(T)=0 \text { Then } \mathscr{E}: y^{2}=x^{3}+F(T) \text {, where } F(T) \in \mathbb{Z}[T] . \text { It is a DP1 } \\
\text { when } \operatorname{deg} F \geq 5 \text { and } F \text { is not a square! }
\end{gathered}
$$

Missing cases and what is known about them

$j(T)=0$ Then $\mathscr{E}: y^{2}=x^{3}+F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when $\operatorname{deg} F \geq 5$ and F is not a square!

- Ulas: $\operatorname{deg} F=5+$ condition $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \Longrightarrow$ $\sharp W_{ \pm}(\mathscr{E})=\infty$.
Most natural counter-example: $F(T)=3 A T^{6}+B$, where $A, B \in \mathbb{Z}$.

Missing cases and what is known about them

$j(T)=0$ Then $\mathscr{E}: y^{2}=x^{3}+F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when $\operatorname{deg} F \geq 5$ and F is not a square!

- Ulas: $\operatorname{deg} F=5+$ condition $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \Longrightarrow$ $\sharp W_{ \pm}(\mathscr{E})=\infty$.
Most natural counter-example: $F(T)=3 A T^{6}+B$, where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)

Missing cases and what is known about them

$j(T)=0$ Then $\mathscr{E}: y^{2}=x^{3}+F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when $\operatorname{deg} F \geq 5$ and F is not a square!

- Ulas: $\operatorname{deg} F=5+$ condition $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \Longrightarrow$ $\sharp W_{ \pm}(\mathscr{E})=\infty$. Most natural counter-example: $F(T)=3 A T^{6}+B$, where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)
$j(T) \notin \mathbb{Q}$ Prove density of rational points without using root number?

Missing cases and what is known about them

$j(T)=0$ Then $\mathscr{E}: y^{2}=x^{3}+F(T)$, where $F(T) \in \mathbb{Z}[T]$. It is a DP1 when $\operatorname{deg} F \geq 5$ and F is not a square!

- Ulas: $\operatorname{deg} F=5+$ condition $\Longrightarrow \mathscr{E}(\mathbb{Q})$ dense.
- Várilly-Alvarado: technical condition on $F \Longrightarrow$ $\sharp W_{ \pm}(\mathscr{E})=\infty$. Most natural counter-example: $F(T)=3 A T^{6}+B$, where $A, B \in \mathbb{Z}$. (D.: root number varies anyway?)
$j(T) \notin \mathbb{Q}$ Prove density of rational points without using root number?
- Salgado \& Van Luijk: When the minimal model is a DP1 and there is a linear polynomial of type I_{1} (among other results)
- Bettin, David \& Delaunay: Restrict the degree of coefficients and study the generic rank with Nagao's formula. (\Longrightarrow project at ICTP!)

Thank you for your attention!

